Use of Luminex MagPlex magnetic microspheres for high-throughput spoligotyping of Mycobacterium tuberculosis isolates in Port-au-Prince, Haiti.
نویسندگان
چکیده
Genotyping of Mycobacterium tuberculosis strains became indispensable for understanding tuberculosis transmission dynamics and designing measures to combat the disease. Unfortunately, typing involves sophisticated laboratory analysis, is expensive, and requires a high level of technical expertise, which limited its use in the resource-poor countries where the majority of tuberculosis cases occur. Spoligotyping is a PCR-based M. tuberculosis complex genotyping method with advantages of technical simplicity, numerical output, and high reproducibility. It is based on the presence or absence of 43 distinct "spacers" separating insertion elements in the direct repeat region of the M. tuberculosis genome. The spoligotyping assay involves reverse hybridization of PCR products to the capture spacers attached to nitrocellulose membranes or to microspheres. Here we report modification of the classic 43-spacer method using the new generation of Luminex multiplexing technology with magnetic microspheres. The method was successfully established and validated on strains with known spoligotypes in our laboratory in Haiti. The distribution of spoligotypes determined in a collection of 758 recent M. tuberculosis isolates was in accordance with previous data for Haitian isolates in the SITWITWEB international database, which were obtained with the traditional membrane-based method. In the present form, spoligotyping may be suitable as a high-throughput, first-line tool for genotyping of Mycobacterium tuberculosis in countries with limited resources.
منابع مشابه
Transfer of a Mycobacterium tuberculosis genotyping method, Spoligotyping, from a reverse line-blot hybridization, membrane-based assay to the Luminex multianalyte profiling system.
Spoligotyping using Luminex technology was shown to be a highly reproducible method suitable for high-throughput analysis. Spoligotyping of 48 isolates using the traditional membrane-based assay and the Luminex assay yielded concordant results for all isolates. The Luminex platform provides greater flexibility and cost effectiveness than the membrane-based assay.
متن کاملMultidrug-resistant tuberculosis in Port-au-Prince, Haiti.
OBJECTIVE To determine the prevalence of multidrug-resistant tuberculosis (MDR-TB) among patients with new smear-positive pulmonary TB in Port-au-Prince, Haiti. METHODS Sputum samples were cultured from 1 006 patients newly diagnosed with TB in 2008. The core region of the rpoB gene that is associated with resistance to rifampin was sequenced. All isolates with rpoB mutations were sent to the...
متن کاملTuberculosis-spoligo-rifampin-isoniazid typing: an all-in-one assay technique for surveillance and control of multidrug-resistant tuberculosis on Luminex devices.
As a follow-up of the "spoligoriftyping" development, we present here an extension of this technique which includes the detection of isoniazid resistance-associated mutations in a new 59-plex assay, i.e., tuberculosis-spoligo-rifampin-isoniazid typing (TB-SPRINT), running on microbead-based multiplexed systems. This assay improves the synergy between clinical microbiology and epidemiology by pr...
متن کاملCorrelation between Genotypic and Phenotypic Testing for Resistance to Rifampin in Mycobacterium tuberculosis Clinical Isolates in Haiti: Investigation of Cases with Discrepant Susceptibility Results
The World Health Organization has recommended use of molecular-based tests MTBDRplus and GeneXpert MTB/RIF to diagnose multidrug-resistant tuberculosis in developing and high-burden countries. Both tests are based on detection of mutations in the Rifampin (RIF) Resistance-Determining Region of DNA-dependent RNA Polymerase gene (rpoB). Such mutations are found in 95-98% of Mycobacterium tubercul...
متن کاملErratum: Detection of First-Line Anti-Tuberculosis Drug Resistance Mutations by Allele-Specific Primer Extension on a Microsphere-Based Platform
BACKGROUND Resistance of Mycobacterium tuberculosis to anti-tuberculosis (TB) drugs is almost exclusively due to spontaneous chromosomal mutations in target genes. Rapid detection of drug resistance to both first- and second-line anti-TB drugs has become a key component of TB control programs. Technologies that allow rapid, cost-effective, and high-throughput detection of specific nucleic acid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of clinical microbiology
دوره 51 7 شماره
صفحات -
تاریخ انتشار 2013